$\mathrm{O} 4-\mathrm{S} 2-\mathrm{N} 2-\mathrm{C} 8$	$175.6(4)$	$\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 6$	$-102.3(6)$
$\mathrm{O} 3-\mathrm{S} 2-\mathrm{N} 2-\mathrm{C} 8$	$45.0(5)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 1$	$-1.5(9)$
$\mathrm{C} 19-\mathrm{S} 2-\mathrm{N} 2-\mathrm{C} 8$	$-70.1(4)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 1$	$178.6(5)$
$\mathrm{O} 4-\mathrm{S} 2-\mathrm{N} 2-\mathrm{C} 7$	$-41.5(5)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 10$	$-1.0(6)$
$\mathrm{O} 3-\mathrm{S} 2-\mathrm{N} 2-\mathrm{C} 7$	$-172.1(4)$	$\mathrm{O} 4-\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 24$	$20.2(6)$
$\mathrm{C} 19-\mathrm{S} 2-\mathrm{N} 2-\mathrm{C} 7$	$72.8(4)$	$\mathrm{O} 3-\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 24$	$151.5(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-179.5(6)$	$\mathrm{N} 2-\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 24$	$-93.5(5)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 11$	$2.1(6)$	$\mathrm{O} 4-\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 20$	$-159.7(5)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 11$	$153.4(4)$	$\mathrm{O} 3-\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 20$	$-28.4(5)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-177.8(5)$	$\mathrm{N} 2-\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 20$	$86.7(5)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-26.5(8)$	$\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	$179.7(5)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 10$	$-2.5(6)$	$\mathrm{S} 2-\mathrm{C} 19-\mathrm{C} 24-\mathrm{C} 23$	$-178.5(5)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 10$	$-152.6(4)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 30$	$29.9(6)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$-177.3(5)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 30$	$162.7(5)$
$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$32.5(7)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 30$	$-83.4(5)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$-44.2(6)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 26$	$-153.5(4)$
$\mathrm{S} 2-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$172.6(4)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 26$	$-20.8(5)$
$\mathrm{C} 10-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 2$	$12.0(8)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 26$	$93.2(5)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 2$	$-173.8(5)$	$\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 27$	$-177.3(5)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$66.1(6)$	$\mathrm{S} 1-\mathrm{C} 25-\mathrm{C} 30-\mathrm{C} 29$	$177.4(5)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D \ldots \mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Ol}$	$0.93(1)$	$2.42(1)$	$3.01(1)$	$121.0(6)$
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O}^{\mathrm{i}}$	$0.93(1)$	$2.53(1)$	$3.33(1)$	$144.8(6)$
$\mathrm{C} 29-\mathrm{H} 29 \cdots \mathrm{O}^{1}$	$0.93(1)$	$2.58(1)$	$3.24(1)$	$128.5(7)$
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{Ol}^{11}$	$0.93(1)$	$2.56(1)$	$3.45(1)$	$161.1(9)$

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $-x, 1-y, 1-z$.
The large discrepancy between the R and $w R$ values is due to the high thermal vibration present in phenyl ring II (atoms $\mathrm{C} 21, \mathrm{C} 22$ and C 23) on the β-carboline moiety. H atoms were geometrically positioned and refined using a riding model.

Data collection: P3/P4-PC Diffractometer Program (Siemens, 1991). Cell refinement: P3/P4-PC Diffractometer Program. Data reduction: SHELXTL-Plus (Sheldrick, 1991). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: SHELXL93 and PARST (Nardelli, 1983, 1995).

One of the authors (LG) thanks CSIR, India, for providing the Senior Research Fellowship. The authors thank Professor P. C. Srinivasan for providing the crystal for X-ray study.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: PT1051). Services for accessing these data are described at the back of the journal.

References

Braestrup, C., Nielsen, M. \& Olsen, C. (1980). Proc. Natl Acad. Sci. USA, 77, 2288-2292.
Cotton, F. A. \& Stokely, P. F. (1970). J. Am. Chem. Soc. 92, 294-302.
Cox, E. D. \& Cook, J. M. (1995). Chem. Rev. 95, 1797-1842.
Everett, J. H., Reynolds, C. D., Sparks, C. A., Pangborn, W., Bailey, P. D., Dauter, Z., Helliwell, M. \& Hollinshead, S. P. (1990). J. Crystallogr. Spectrosc. Res. 20, 109-115.
Gomes, A. C., Biswas, G., Biswas, S., Biswas, G. K., Iitaka, Y. \& Banerjee, A. (1993). J. Crystallogr. Spectrosc. Res. 23, 513-517.
Kálmán, A., Czugler, M. \& Argau, G. (1981). Acta Cryst. B37, 868877.

Mohanakrishnan, A. K. \& Srinivasan, P. C. (1996). Personal communication.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Ninan, P. T., Insel, T. M., Cohen, R. M., Cook, J. M., Skolnick, P. \& Paul, S. M. (1982). Science, 218, 1332-1334.
Oakley, N. \& Jones, B. (1980). Eur. J. Pharmacol. 68, 381.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Revision 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Cambridge, England.
Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zsolnai, L. (1997). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1998). C54, 279-281

1,3,3-Trimethylindoline-2-spiro-2'-3'-methyl-2'H-phenanthro[9,10-b][1,4]oxazine

Yong-Chao Liang, ${ }^{a}$ Xue-An Chen, ${ }^{b}$ Ling Zhao, ${ }^{b}$ Qi-Yuan Zhang, ${ }^{b}$ Jian-Xin Chen, ${ }^{b}$ Yang-Fu Ming ${ }^{a}$ and Mei-Gong Fan ${ }^{a}$
${ }^{a}$ Institute of Photographic Chemistry, Chinese Academy of Sciences, Beijing 100101, People's Republic of China, and ${ }^{\text {b }}$ State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.
E-mail: chen@nirim.go.jp

(Received 8 July 1997; accepted 6 October 1997)

Abstract

In the title compound, $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$, both benzo and phenanthro rings are essentially planar, the dihedral angle between them being 73.61 (4) ${ }^{\circ}$. The non-aromatic five- and six-membered rings adopt deformed envelope and half-chair conformations, respectively. Molecules are linked by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions which exhibit $\mathrm{C} \cdots \mathrm{N}$ non-bonded contacts of 3.481 (2) and 3.540 (2) \AA, respectively.

Comment

Spirooxazine is the most important member of one of the best known organic photochromic systems (Durr \& Laurent, 1990). Many applications have been envisaged in several key areas such as high-density optical storage, optical switching, photochromic lenses, image processing and displays. In order to study the relationship between molecular structure and photochromic behaviour, the structures of several spirooxazines have been determined (Maeda et al., 1994; Osano et al., 1991; Clegg et al., 1991), most of them concerning indolinespironaphthooxazines and indolinespiroquinolinooxazines. In
this paper, we report the structure of a novel photochromic compound, (I).

(I)

The molecular dimensions (Table 1) are comparable with those in related molecules (e.g. Allen et al., 1987; Parvez \& Rusiewicz, 1996). The calculation of leastsquares planes through the aromatic rings shows that they exhibit the expected planar geometries and that the benzo ring is more planar than the phenanthro ring [maximum deviations of 0.004 (1) and 0.048 (2) \AA, respectively]. The dihedral angle between these two planes is $73.61(4)^{\circ}$. Atoms C7 and N2 lie close to the benzo ring plane, with deviations of 0.074 (3) and 0.012 (2) A, respectively. Similarly, atoms C11, N1 and O 1 are approximately coplanar with the phenanthro ring plane, their deviations from this plane being 0.023 (2), 0.195 (2) and 0.060 (2) \AA, respectively. Atom C 10 is markedly displaced out of both the benzo and the phenanthro ring planes, by 0.411 (3) and 0.516 (2) \AA, respectively. In contrast, the non-aromatic five- and sixmembered rings are twisted and their conformations may be characterized according to the method given by Cremer \& Pople (1975). The five-membered ring has a deformed envelope conformation with pseudorotational phase angle, φ_{2}, of $175.6(2)^{\circ}$ and a puckering amplitude, q_{2}, of 0.303 (2) A. Atoms N2, C1, C6 and C7 are almost coplanar, with an $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$ torsion of $2.0(2)^{\circ}$ and a maximum deviation of 0.011 (1) \AA. The deviation of atom C 10 from the least-squares plane of this group is 0.477 (2) \AA. The six-membered heteroatomic ring adopts an approximately half-chair conformation with puckering parameters (Cremer \& Pople, 1975) $Q=0.353$ (2) A, $\theta=111.6$ (2) and $\varphi=$

Fig. I. A view of the molecule showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms have been assigned a small arbitrary radius for clarity.
165.2 (2) ${ }^{\circ}$. Atoms C10 and N1 lie on opposite sides of the best plane through atoms $\mathrm{C} 11, \mathrm{C} 13, \mathrm{C} 26$ and O1 [planar to within 0.001 (1) Å], with displacements of 0.487 (2) and $-0.153(2) \AA$, respectively.

The π-electron delocalization of the aromatic rings extends its influence to the adjacent atoms. This is confirmed by the bond lengths and torsion angles involving atoms $\mathrm{N} 2, \mathrm{C} 7$ and O1. For instance, the C1N 2 bond length is 1.407 (2) \AA, which is between that for a $\mathrm{C}-\mathrm{N}$ single bond ($1.48 \AA$) and a $\mathrm{C}=\mathrm{N}$ double bond ($1.28 \AA$) (Allen et al., 1987), indicating partial delocalization of π-electron density over the benzo ring and the N2 lone pair. Similarly, the C26-O1 bond length of 1.364 (2) \AA is shorter than a $\mathrm{C}-\mathrm{O}$ single bond ($1.43 \AA$) and longer than a $\mathrm{C}=\mathrm{O}$ double bond ($1.23 \AA$) (Allen et al., 1987), indicating that Ol is conjugated with the π-electron system of the phenanthro ring. The observed $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2, \mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ and C24-C25-C26-O1 torsion angles of -179.1 (1), 176.7 (2) and $1.3(2)^{\circ}$, respectively, indicate a nearly planar configuration.

Examination of the intermolecular distances associated with $\mathrm{N} 1, \mathrm{~N} 2$ and O 1 suggests that each N 1 atom forms two weak hydrogen bonds with H atoms on C21 and C27 of the nearest neighbouring molecules [C21$\mathrm{H} 210.93, \mathrm{H} 21 \cdots \mathrm{~N} 1^{i} 2.71, \mathrm{C} 21 \cdots \mathrm{~N} 1^{i} 3.481(2) \AA$ and $\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{Nl}^{\mathrm{i}} 140^{\circ} ; \mathrm{C} 27-\mathrm{H} 27 \mathrm{~A} 0.96, \mathrm{H} 27 \mathrm{~A} \cdots \mathrm{~N} 1^{i i}$ 2.64, $\mathrm{C} 27 \cdots \mathrm{~N} 1^{\mathrm{ii}} 3.540(2) \AA$ and $\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A} \cdots \mathrm{~N} \mathrm{I}^{\mathrm{ii}}$ 157°; symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x,-y, 2-z]$. These intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Taylor \& Kennard, 1982) contribute to the stabilization of the crystal packing and no other intermolecular hydrogen-bonding interactions are found in the structure.

Experimental

A mixture of $1,3,3$-trimethyl-2-ethylindolium iodide $(1.6 \mathrm{~g}$, $5.3 \mathrm{mmol}), 9,10$-phenanthrenequinone monooxime (1.1 g , 4.9 mmol) and triethylamine (3 ml) were dissolved in absolute ethanol (50 ml). The solution was refluxed for 6 h . After evaporation of the solvent, the residue was chromatographed on silica gel (yield: 56%, m.p. $470-473 \mathrm{~K}$). The crystal was obtained by recrystallization from ethanol-petroleum ether (1:1).

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=392.48$
Monoclinic
$P 2_{1} / n$
$a=9.766(2) \AA$
$b=16.184(3) \AA$
$c=13.456(2) \AA$
$\beta=100.82(2)^{\circ}$
$V=2088.8(7) \AA^{3}$
$Z=4$
$D_{x}=1.248 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=5-15^{\circ}$
$\mu=0.076 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism
$0.35 \times 0.30 \times 0.30 \mathrm{~mm}$
Colourless

Data collection

Siemens P4 four-circle diffractometer
$\theta-2 \theta$ scans
Absorption correction: none
4693 measured reflections
3666 independent reflections 2450 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.109$
$S=0.946$
3666 reflections
274 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0626 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.001$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25^{\circ}$
$h=-1 \rightarrow 11$
$k=-1 \rightarrow 19$
$l=-16 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: none

$$
\Delta \rho_{\max }=0.23 \mathrm{e}_{\AA_{\circ}^{-3}}^{-3}
$$

$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.047 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 26$	$1.364(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.509(2)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.466(2)$	$\mathrm{C} 7-\mathrm{C} 9$	$1.527(2)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.283(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.543(2)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.412(2)$	$\mathrm{C} 7-\mathrm{C} 10$	$1.573(2)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.407(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.529(2)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.439(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.500(2)$
$\mathrm{N} 2-\mathrm{C} 27$	$1.451(2)$		
$\mathrm{C} 26-\mathrm{O} 1-\mathrm{C} 10$	$117.61(11)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 27$	$118.66(13)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 13$	$118.60(14)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 27$	$119.06(12)$
$\mathrm{Cl}-\mathrm{N} 2-\mathrm{C} 10$	$107.78(12)$		

All non-H atoms were refined anisotropically. H atoms were placed in geometrically calculated positions and allowed to refine, riding on the atoms to which they are attached, with a
common isotropic displacement parameter of 0.090 (2) \AA^{2} for methyl and 0.067 (2) \AA^{2} for aromatic groups.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: XP (Siemens, 1991). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1186). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Clegg, W., Norman, N. C., Flood, T., Sallans, L., Kwak, W. S., Kwiatkowski, P. L. \& Lasch, J. G. (1991). Acta Cryst. C47, 817824.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Durr, H. \& Laurent, B. (1990). In Photochromism, Molecules and Systems. Amsterdam: Elsevier.
Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Maeda, S., Mitsuhashi, K., Osano, S. T., Nakamura, S. \& Ito, M. (1994). Mol. Cryst. Liq. Cryst. 246, 223-230.

Osano, Y. T., Mitsuhashi, K., Maeda, S. \& Matsuzaki, T. (1991). Acta Cryst. C47, 2137-2141.
Parvez, M. \& Rusiewicz, M. (1996). Acta Cryst. C52, 83-85.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XP. Interactive Molecular Graphics Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

